Existence and Multiplicity of Solutions for Nonhomogeneous Klein-gordon-maxwell Equations

نویسندگان

  • LIPING XU
  • HAIBO CHEN
چکیده

This article concerns the nonhomogeneous Klein-Gordon-Maxwell equation −∆u+ u− (2ω + φ)φu = |u|p−1u+ h(x), in R, ∆φ = (ω + φ)u, in R, where ω > 0 is constant, p ∈ (1, 5). Under appropriate assumptions on h(x), the existence of at least two solutions is obtained by applying the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Positive Solutions for Nonlinear Field Equations in R

In this paper we study the multiplicity of positive solutions for nonlinear elliptic equations on R . The number of solutions is greater or equal than the number of disjoint intervals on which the nonlinear term is negative. Applications are given to multiplicity of standing waves for the nonlinear Schrödinger, Klein-Gordon and Klein-Gordon-Maxwell equations.

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Existence and Multiplicity of Stable Bound States for the Nonlinear Klein-gordon Equation

Abstract. We are interested in the problem of existence of soliton-like solutions for the nonlinear Klein-Gordon equation. In particular we study some necessary and sufficient conditions on the nonlinear term to obtain solitons of a given charge. We remark that the conditions we consider can be easily verified. Moreover we show that multiplicity of solitons of the same charge is guaranteed by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015